
Test Documentation
Release 1

Tester Testy

August 11, 2015

Contents

1 Overview 3
1.1 Requirements . 3
1.2 Installation . 3
1.3 License . 4
1.4 Contributing . 4
1.5 Reporting a security vulnerability . 5

2 Quickstart 7
2.1 Making a Request . 7
2.2 Using Responses . 10
2.3 Query String Parameters . 11
2.4 Uploading Data . 11
2.5 Cookies . 12
2.6 Redirects . 13
2.7 Exceptions . 13
2.8 Environment Variables . 14

3 TestMD! 15
3.1 Second heading! . 15

4 DateTime Class 17

i

ii

Test Documentation, Release 1

Contents:

Contents 1

Test Documentation, Release 1

2 Contents

CHAPTER 1

Overview

1.1 Requirements

1. PHP 5.5.0

2. To use the PHP stream handler, allow_url_fopen must be enabled in your system’s php.ini.

3. To use the cURL handler, you must have a recent version of cURL >= 7.19.4 compiled with OpenSSL and zlib.

Note: Guzzle no longer requires cURL in order to send HTTP requests. Guzzle will use the PHP stream wrapper
to send HTTP requests if cURL is not installed. Alternatively, you can provide your own HTTP handler used to send
requests.

1.2 Installation

The recommended way to install Guzzle is with Composer. Composer is a dependency management tool for PHP that
allows you to declare the dependencies your project needs and installs them into your project.

Install Composer
curl -sS https://getcomposer.org/installer | php

You can add Guzzle as a dependency using the composer.phar CLI:

php composer.phar require guzzlehttp/guzzle:~6.0

Alternatively, you can specify Guzzle as a dependency in your project’s existing composer.json file:

{
"require": {

"guzzlehttp/guzzle": "~6.0"
}

}

After installing, you need to require Composer’s autoloader:

require 'vendor/autoload.php';

You can find out more on how to install Composer, configure autoloading, and other best-practices for defining depen-
dencies at getcomposer.org.

3

http://getcomposer.org
http://getcomposer.org

Test Documentation, Release 1

1.2.1 Bleeding edge

During your development, you can keep up with the latest changes on the master branch by setting the version require-
ment for Guzzle to ~6.0@dev.

{
"require": {

"guzzlehttp/guzzle": "~6.0@dev"
}

}

1.3 License

Licensed using the MIT license.

Copyright (c) 2015 Michael Dowling <https://github.com/mtdowling>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS-
ING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

1.4 Contributing

1.4.1 Guidelines

1. Guzzle utilizes PSR-1, PSR-2, PSR-4, and PSR-7.

2. Guzzle is meant to be lean and fast with very few dependencies. This means that not every feature request will
be accepted.

3. Guzzle has a minimum PHP version requirement of PHP 5.5. Pull requests must not require a PHP version
greater than PHP 5.5 unless the feature is only utilized conditionally.

4. All pull requests must include unit tests to ensure the change works as expected and to prevent regressions.

1.4.2 Running the tests

In order to contribute, you’ll need to checkout the source from GitHub and install Guzzle’s dependencies using Com-
poser:

4 Chapter 1. Overview

http://opensource.org/licenses/MIT
https://github.com/mtdowling

Test Documentation, Release 1

git clone https://github.com/guzzle/guzzle.git
cd guzzle && curl -s http://getcomposer.org/installer | php && ./composer.phar install --dev

Guzzle is unit tested with PHPUnit. Run the tests using the Makefile:

make test

Note: You’ll need to install node.js v0.5.0 or newer in order to perform integration tests on Guzzle’s HTTP handlers.

1.5 Reporting a security vulnerability

We want to ensure that Guzzle is a secure HTTP client library for everyone. If you’ve discovered a security vulnera-
bility in Guzzle, we appreciate your help in disclosing it to us in a responsible manner.

Publicly disclosing a vulnerability can put the entire community at risk. If you’ve discovered a security concern, please
email us at security@guzzlephp.org. We’ll work with you to make sure that we understand the scope of the issue, and
that we fully address your concern. We consider correspondence sent to security@guzzlephp.org our highest priority,
and work to address any issues that arise as quickly as possible.

After a security vulnerability has been corrected, a security hotfix release will be deployed as soon as possible.

1.5. Reporting a security vulnerability 5

http://en.wikipedia.org/wiki/Responsible_disclosure
mailto:security@guzzlephp.org
mailto:security@guzzlephp.org

Test Documentation, Release 1

6 Chapter 1. Overview

CHAPTER 2

Quickstart

This page provides a quick introduction to Guzzle and introductory examples. If you have not already installed,
Guzzle, head over to the Installation page.

2.1 Making a Request

You can send requests with Guzzle using a GuzzleHttp\ClientInterface object.

2.1.1 Creating a Client

use GuzzleHttp\Client;

$client = new Client([
// Base URI is used with relative requests
'base_uri' => 'http://httpbin.org',
// You can set any number of default request options.
'timeout' => 2.0,

]);

The client constructor accepts an associative array of options:

base_uri (string|UriInterface) Base URI of the client that is merged into relative URIs. Can be a string or instance
of UriInterface. When a relative URI is provided to a client, the client will combine the base URI with the
relative URI using the rules described in RFC 3986, section 2.

// Create a client with a base URI
$client = new GuzzleHttp\Client(['base_uri' => 'https://foo.com/api/']);
// Send a request to https://foo.com/api/test
$response = $client->get('test');
// Send a request to https://foo.com/root
$response = $client->get('/root');

Don’t feel like reading RFC 3986? Here are some quick examples on how a base_uri is resolved with another
URI.

7

http://tools.ietf.org/html/rfc3986#section-5.2

Test Documentation, Release 1

base_uri URI Result
http://foo.com /bar http://foo.com/bar
http://foo.com/foo /bar http://foo.com/bar
http://foo.com/foo bar http://foo.com/bar
http://foo.com/foo/ bar http://foo.com/foo/bar
http://foo.com http://baz.com http://baz.com
http://foo.com/?bar bar http://foo.com/bar

handler (callable) Function that transfers HTTP requests over the wire. The function is
called with a Psr7\Http\Message\RequestInterface and array of transfer options,
and must return a GuzzleHttp\Promise\PromiseInterface that is fulfilled with a
Psr7\Http\Message\ResponseInterface on success. handler is a constructor only option
that cannot be overridden in per/request options.

... (mixed) All other options passed to the constructor are used as default request options with every request created
by the client.

2.1.2 Sending Requests

Magic methods on the client make it easy to send synchronous requests:

$response = $client->get('http://httpbin.org/get');
$response = $client->delete('http://httpbin.org/delete');
$response = $client->head('http://httpbin.org/get');
$response = $client->options('http://httpbin.org/get');
$response = $client->patch('http://httpbin.org/patch');
$response = $client->post('http://httpbin.org/post');
$response = $client->put('http://httpbin.org/put');

You can create a request and then send the request with the client when you’re ready:

use GuzzleHttp\Psr7\Request;

$request = new Request('PUT', 'http:/httpbin.org/put');
$response = $client->send($request, ['timeout' => 2]);

Client objects provide a great deal of flexibility in how request are transferred including default request options, default
handler stack middleware that are used by each request, and a base URI that allows you to send requests with relative
URIs.

You can find out more about client middleware in the handlers-and-middleware page of the documentation.

2.1.3 Async Requests

You can send asynchronous requests using the magic methods provided by a client:

$promise = $client->getAsync('http://httpbin.org/get');
$promise = $client->deleteAsync('http://httpbin.org/delete');
$promise = $client->headAsync('http://httpbin.org/get');
$promise = $client->optionsAsync('http://httpbin.org/get');
$promise = $client->patchAsync('http://httpbin.org/patch');
$promise = $client->postAsync('http://httpbin.org/post');
$promise = $client->putAsync('http://httpbin.org/put');

You can also use the sendAsync() and requestAsync() methods of a client:

8 Chapter 2. Quickstart

Test Documentation, Release 1

use GuzzleHttp\Psr7\Request;

// Create a PSR-7 request object to send
$headers = ['X-Foo' => 'Bar'];
$body = 'Hello!';
$request = new Request('HEAD', 'http://httpbin.org/head', $headers, $body);

// Or, if you don't need to pass in a request instance:
$promise = $client->requestAsync('GET', 'http://httpbin.org/get');

The promise returned by these methods implements the Promises/A+ spec, provided by the Guzzle promises library.
This means that you can chain then() calls off of the promise. These then calls are either fulfilled with a successful
Psr\Http\Message\ResponseInterface or rejected with an exception.

use Psr\Http\Message\ResponseInterface;
use GuzzleHttp\Exception\RequestException;

$promise = $client->requestAsync('GET', 'http://httpbin.org/get');
$promise->then(

function (ResponseInterface $res) {
echo $res->getStatusCode() . "\n";

},
function (RequestException $e) {

echo $e->getMessage() . "\n";
echo $e->getRequest()->getMethod();

}
);

2.1.4 Concurrent requests

You can send multiple requests concurrently using promises and asynchronous requests.

use GuzzleHttp\Client;
use GuzzleHttp\Promise;

$client = new Client(['base_uri' => 'http://httpbin.org/']);

// Initiate each request but do not block
$promises = [

'image' => $client->getAsync('/image'),
'png' => $client->getAsync('/image/png'),
'jpeg' => $client->getAsync('/image/jpeg'),
'webp' => $client->getAsync('/image/webp')

];

// Wait on all of the requests to complete.
$results = Promise\unwrap($promises);

// You can access each result using the key provided to the unwrap
// function.
echo $results['image']->getHeader('Content-Length');
echo $results['png']->getHeader('Content-Length');

You can use the GuzzleHttp\Pool object when you have an indeterminate amount of requests you wish to send.

use GuzzleHttp\Pool;
use GuzzleHttp\Client;

2.1. Making a Request 9

https://promisesaplus.com/
https://github.com/guzzle/promises

Test Documentation, Release 1

use GuzzleHttp\Psr7\Request;

$client = new Client();

$requests = function ($total) {
$uri = 'http://127.0.0.1:8126/guzzle-server/perf';
for ($i = 0; $i < $total; $i++) {

yield new Request('GET', $uri);
}

};

$pool = new Pool($client, $requests(100), [
'concurrency' => 5,
'fulfilled' => function ($response, $index) {

// this is delivered each successful response
},
'rejected' => function ($reason, $index) {

// this is delivered each failed request
},

]);

// Initiate the transfers and create a promise
$promise = $pool->promise();

// Force the pool of requests to complete.
$promise->wait();

2.2 Using Responses

In the previous examples, we retrieved a $response variable or we were delivered a response from a promise. The
response object implements a PSR-7 response, Psr\Http\Message\ResponseInterface, and contains lots
of helpful information.

You can get the status code and reason phrase of the response:

$code = $response->getStatusCode(); // 200
$reason = $response->getReasonPhrase(); // OK

You can retrieve headers from the response:

// Check if a header exists.
if ($response->hasHeader('Content-Length')) {

echo "It exists";
}

// Get a header from the response.
echo $response->getHeader('Content-Length');

// Get all of the response headers.
foreach ($response->getHeaders() as $name => $values) {

echo $name . ': ' . implode(', ', $values) . "\r\n";
}

10 Chapter 2. Quickstart

Test Documentation, Release 1

2.3 Query String Parameters

You can provide query string parameters with a request in several ways.

You can set query string parameters in the request’s URI:

$response = $client->get('http://httpbin.org?foo=bar');

You can specify the query string parameters using the query request option as an array.

$client->get('http://httpbin.org', [
'query' => ['foo' => 'bar']

]);

Providing the option as an array will use PHP’s http_build_query function to format the query string.

And finally, you can provide the query request option as a string.

$client->get('http://httpbin.org', ['query' => 'foo=bar']);

2.4 Uploading Data

Guzzle provides several methods for uploading data.

You can send requests that contain a stream of data by passing a string, resource returned from fopen, or an instance
of a Psr\Http\Message\StreamInterface to the body request option.

// Provide the body as a string.
$r = $client->post('http://httpbin.org/post', ['body' => 'raw data']);

// Provide an fopen resource.
$body = fopen('/path/to/file', 'r');
$r = $client->post('http://httpbin.org/post', ['body' => $body]);

// Use the stream_for() function to create a PSR-7 stream.
$body = \GuzzleHttp\Psr7\stream_for('hello!');
$r = $client->post('http://httpbin.org/post', ['body' => $body]);

An easy way to upload JSON data and set the appropriate header is using the json request option:

$r = $client->put('http://httpbin.org/put', [
'json' => ['foo' => 'bar']

]);

2.4.1 POST/Form Requests

In addition to specifying the raw data of a request using the body request option, Guzzle provides helpful abstractions
over sending POST data.

Sending form fields

Sending application/x-www-form-urlencoded POST requests requires that you specify the POST fields
as an array in the form_params request options.

2.3. Query String Parameters 11

Test Documentation, Release 1

$response = $client->post('http://httpbin.org/post', [
'form_params' => [

'field_name' => 'abc',
'other_field' => '123',
'nested_field' => [

'nested' => 'hello'
]

]
]);

Sending form files

You can send files along with a form (multipart/form-data POST requests), using the multipart request
option. multipart accepts an array of associative arrays, where each associative array contains the following keys:

• name: (required, string) key mapping to the form field name.

• contents: (required, mixed) Provide a string to send the contents of the file as a string, provide an fopen re-
source to stream the contents from a PHP stream, or provide a Psr\Http\Message\StreamInterface
to stream the contents from a PSR-7 stream.

$response = $client->post('http://httpbin.org/post', [
'multipart' => [

[
'name' => 'field_name',
'contents' => 'abc'

],
[

'name' => 'file_name',
'contents' => fopen('/path/to/file', 'r')

],
[

'name' => 'other_file',
'contents' => 'hello',
'filename' => 'filename.txt',
'headers' => [

'X-Foo' => 'this is an extra header to include'
]

]
]

]);

2.5 Cookies

Guzzle can maintain a cookie session for you if instructed using the cookies request op-
tion. When sending a request, the cookies option must be set an an instance of
GuzzleHttp\Subscriber\CookieJar\CookieJarInterface.

// Use a specific cookie jar
$jar = new \GuzzleHttp\Cookie\CookieJar;
$r = $client->get('http://httpbin.org/cookies', ['cookies' => $jar]);

You can set cookies to true in a client constructor if you would like to use a shared cookie jar for all requests.

12 Chapter 2. Quickstart

Test Documentation, Release 1

// Use a shared client cookie jar
$client = new \GuzzleHttp\Client(['cookies' => true]);
$r = $client->get('http://httpbin.org/cookies');

2.6 Redirects

Guzzle will automatically follow redirects unless you tell it not to. You can customize the redirect behavior using the
allow_redirects request option.

• Set to true to enable normal redirects with a maximum number of 5 redirects. This is the default setting.

• Set to false to disable redirects.

• Pass an associative array containing the ‘max’ key to specify the maximum number of redirects and optionally
provide a ‘strict’ key value to specify whether or not to use strict RFC compliant redirects (meaning redirect
POST requests with POST requests vs. doing what most browsers do which is redirect POST requests with GET
requests).

$response = $client->get('http://github.com');
echo $response->getStatusCode();
// 200

The following example shows that redirects can be disabled.

$response = $client->get('http://github.com', ['allow_redirects' => false]);
echo $response->getStatusCode();
// 301

2.7 Exceptions

Guzzle throws exceptions for errors that occur during a transfer.

• In the event of a networking error (connection timeout, DNS errors, etc.), a
GuzzleHttp\Exception\RequestException is thrown. This exception extends from
GuzzleHttp\Exception\TransferException. Catching this exception will catch any excep-
tion that can be thrown while transferring requests.

use GuzzleHttp\Exception\RequestException;

try {
$client->get('https://github.com/_abc_123_404');

} catch (RequestException $e) {
echo $e->getRequest();
if ($e->hasResponse()) {

echo $e->getResponse();
}

}

• A GuzzleHttp\Exception\ConnectException exception is thrown in the event of a networking error.
This exception extends from GuzzleHttp\Exception\RequestException.

• A GuzzleHttp\Exception\ClientException is thrown for 400 level
errors if the http_errors request option is set to true. This ex-
ception extends from GuzzleHttp\Exception\BadResponseException

2.6. Redirects 13

Test Documentation, Release 1

and GuzzleHttp\Exception\BadResponseException extends from
GuzzleHttp\Exception\RequestException.

use GuzzleHttp\Exception\ClientException;

try {
$client->get('https://github.com/_abc_123_404');

} catch (ClientException $e) {
echo $e->getRequest();
echo $e->getResponse();

}

• A GuzzleHttp\Exception\ServerException is thrown for 500 level errors
if the http_errors request option is set to true. This exception extends from
GuzzleHttp\Exception\BadResponseException.

• A GuzzleHttp\Exception\TooManyRedirectsException is thrown when too many redirects are
followed. This exception extends from GuzzleHttp\Exception\RequestException.

All of the above exceptions extend from GuzzleHttp\Exception\TransferException.

2.8 Environment Variables

Guzzle exposes a few environment variables that can be used to customize the behavior of the library.

GUZZLE_CURL_SELECT_TIMEOUT Controls the duration in seconds that a curl_multi_* handler will use when
selecting on curl handles using curl_multi_select(). Some systems have issues with PHP’s implemen-
tation of curl_multi_select() where calling this function always results in waiting for the maximum
duration of the timeout.

HTTP_PROXY Defines the proxy to use when sending requests using the “http” protocol.

HTTPS_PROXY Defines the proxy to use when sending requests using the “https” protocol.

2.8.1 Relevant ini Settings

Guzzle can utilize PHP ini settings when configuring clients.

openssl.cafile Specifies the path on disk to a CA file in PEM format to use when sending requests over “https”.
See: https://wiki.php.net/rfc/tls-peer-verification#phpini_defaults

14 Chapter 2. Quickstart

https://wiki.php.net/rfc/tls-peer-verification#phpini_defaults

CHAPTER 3

TestMD!

We are testing md!

3.1 Second heading!

Testing MD files.

use GuzzleHttp\Client;

$client = new Client([
// Base URI is used with relative requests
`base_uri' => `http://httpbin.org',
// You can set any number of default request options.
`timeout' => 2.0,

]);

15

Test Documentation, Release 1

16 Chapter 3. TestMD!

CHAPTER 4

DateTime Class

class DateTime
Datetime class

setDate($year, $month, $day)
Set the date.

Parameters

• $year (int) – The year.

• $month (int) – The month.

• $day (int) – The day.

Returns Either false on failure, or the datetime object for method chaining.

setTime($hour, $minute[, $second])
Set the time.

Parameters

• $hour (int) – The hour

• $minute (int) – The minute

• $second (int) – The second

Returns Either false on failure, or the datetime object for method chaining.

constant ATOM
Y-m-dTH:i:sP

17

Test Documentation, Release 1

18 Chapter 4. DateTime Class

Index

D
DateTime (class), 17
DateTime::ATOM (class constant), 17

S
setDate() (DateTime method), 17
setTime() (DateTime method), 17

19

	Overview
	Requirements
	Installation
	License
	Contributing
	Reporting a security vulnerability

	Quickstart
	Making a Request
	Using Responses
	Query String Parameters
	Uploading Data
	Cookies
	Redirects
	Exceptions
	Environment Variables

	TestMD!
	Second heading!

	DateTime Class

